1 he Reactive Vaniesto

Published on Sept. 23 0f 2013. (v1.1)
Table of Contents

7. The Need to Go Reactive
2. Reactive Applications

3. Event-driven

4. Scalable

5. Resilient

6. Responsive

7. Conclusion

The Need to Go Reactive

Application requirements have changed dramatically in recent years. Only a few years ago a large
application had tens of servers, seconds of response time, hours of offline maintenance and
gigabytes of data. Today applications are deployed on everything from mobile devices to cloud-
based clusters running thousands of multicore processors. Users expect millisecond or even
microsecond response times and 100% uptime. Data needs are expanding into the petabytes.

Initially the domain of innovative internet-driven companies like Google or Twitter, these
application characteristics are surfacing in most industries. Finance and telecommunication were
the first to adopt new practices to satisfy the new requirements and others have followed.

New requirements demand new technologies. Previous solutions have emphasized managed
servers and containers. Scaling was achieved through buying larger servers and concurrent
processing via multi-threading. Additional servers were added through complex, inefficient and
expensive proprietary solutions.

But now a new architecture has evolved to let developers conceptualize and build applications
that satisfy today’s demands. We call these Reactive Applications. This architecture allows
developers to build systems that are event-driven, scalable, resilient and responsive: delivering



highly responsive user experiences with a real-time feel, backed by a scalable and resilient
application stack, ready to be deployed on multicore and cloud computing architectures. The
Reactive Manifesto describes these critical traits which are needed for going reactive.

~eactive Applications

Merriam-Webster defines reactive as “readily responsive to a stimulus”,i.e. its components are
“active” and always ready to receive events. This definition captures the essence of reactive
applications, focusing on systems that:

react to events react to load
the event-driven nature enables the focus on scalability by avoiding contention
following qualities on shared resources
react to failure react to users
build resilient systems with the ability to honor response time guarantees regardless
recover at all levels of load

Each one of these is an essential characteristic of a reactive application. While there are
dependencies between them, these traits are not like tiers in a standard layered application
architecture sense. Instead they describe design properties that apply across the whole technology
stack.

responsive




fig. 1 The Reactive Traits

In the following we will take a deeper look at each of the four qualities and see how they relate to
each other.

—vent-arnven

Why it is Important

An application based on asynchronous communication implements a loosely coupled design, much
better so than one based purely on synchronous method calls. The sender and recipient can be
implemented without regards to the details of how the events are propagated, allowing the
interfaces to focus on the content of the communication. This leads to an implementation which
is easier to extend, evolve and maintain, giving you more flexibility and reducing maintenance
cost.

Since the recipient of asynchronous communication can remain dormant until an event occurs or
a message is received, an event-driven approach can make efficient use of existing resources,
allowing large numbers of recipients to share a single hardware thread. A non-blocking
application that is under heavy load can thus have lower latency and higher throughput than a
traditional application based on blocking synchronization and communication primitives. This
results in lower operational costs, increased utilization and happier end-users.

Key Building Blocks

In an event-driven application, the components interact with each other through the production
and consumption of events—discrete pieces of information describing facts. These events are sent
and received in an asynchronous and non-blocking fashion. Event-driven systems tend to rely on
push rather than pull or poll, i.e. they push data towards consumers when it is available instead of
wasting resources by having the consumers continually ask for or wait on the data.

* Asynchronous sending of events—also called message-passing—means that the application
is highly concurrent by design and can make use of multicore hardware without changes.
Any core within a CPU is able to process any message event, leading to a dramatic increase
in opportunities for parallelization.

* Non-blocking means the ability to make continuous progress in order to for the application
to be responsive at all times, even under failure and burst scenarios. For this all resources
needed for a response—for example CPU, memory and network—must not be
monopolized. As such it can enable both lower latency, higher throughput and better
scalability.

Traditional server-side architectures rely on shared mutable state and blocking operations on a



single thread. Both contribute to the difficulties encountered when scaling such a system to meet
changing demands. Sharing mutable state requires synchronization, which introduces incidental
complexity and non-determinism, making the program code hard to understand and maintain.
Putting a thread to sleep by blocking uses up a finite resource and incurs a high wake-up cost.

The decoupling of event generation and processing allows the runtime platform to take care of the
synchronization details and how events are dispatched across threads, while the programming
abstraction is raised to the level of business workflows. You think about how events propagate
through your system and how components interact instead of fiddling around with low-level
primitives such as threads and locks.

Event-driven systems enable loose coupling between components and subsystems. This level of
indirection is, as we will see, one of the prerequisites for scalability and resilience. By removing
complex and strong dependencies between components, event-driven applications can be
extended with minimal impact on the existing application.

When applications are stressed by requirements for high performance and large scalability it is
difficult to predict where bottlenecks will arise. Therefore it is important that the entire solution is
asynchronous and non-blocking. In a typical example this means that the design needs to be
event-driven from the user request in the UI (in the browser, REST client or elsewhere) to the
request parsing and dispatching in the web layer, to the service components in the middleware,
through the caching and down to the database. If one of these layers does not participate—making
blocking calls to the database, relying on shared mutable state, calling out to expensive
synchronous operations—then the whole pipeline stalls and users will suffer through increased
latency and reduced scalability.

An application must be reactive from top to bottom.

The need for eliminating the weakest link in the chain is well illustrated by Amdahl’s Law, which
according to Wikipedia is explained as:

SPEEDUP 05%, parallel

90%; parallel

75%: parallel

50% parallel

"PROCESSORS

The speedup of a program using multiple processors in parallel computing is
limited by the sequential fraction of the program. For example, if 95% of the
program can be parallelized, the theoretical maximum speedup using parallel


http://en.wikipedia.org/wiki/Amdahl%27s_law

computing would be 20% as shown in the diagram, no matter how many
processors are used.

fig. 2 Amdahl's Law

Scaable

Why it is Important

The word scalable is defined by Merriam-Webster as “capable of being easily expanded or upgraded
on demand”. A scalable application is able to be expanded according to its usage. This can be
achieved by adding elasticity to the application, the option of being able to scale out or in (add or
remove nodes) on demand. In addition, the architecture makes it easy to scale up or down
(deploying on a node with more or fewer CPUs) without redesigning or rewriting the application.
Elasticity makes it possible to minimize the cost of operating applications in a cloud computing
environment, allowing you to profit from its pay-for-what-you-use model.

Scalability also helps managing risk: providing too little hardware to keep up with user load leads
to dissatisfaction and loss of customers, having too much hardware—and operations personnel—
idling for no good reason results in unnecessary expense. A scalable solution also mitigates the
risk of ending up with an application that is unable to make use of new hardware becoming
available: we will see processors with hundreds, if not thousands of hardware threads within the
next decade and utilizing their potential requires the application to be scalable at a very fine-
grained level.

Key Building Blocks

An event-driven system based on asynchronous message-passing provides the foundation for
scalability. The loose coupling and location independence between components and subsystems
make it possible to scale out the system onto multiple nodes while retaining the same
programming model with the same semantics. Adding more instances of a component increases
the system’s capacity to process events. In terms of implementation there is no difference
between scaling up by utilizing multiple cores or scaling out by utilizing more nodes in a
datacenter or cluster. The topology of the application becomes a deployment decision which is
expressed through configuration and/or adaptive runtime algorithms responding to application
usage. This is what we call location transparency.

It is important to understand that the goal is not to try to implement transparent distributed
computing, distributed objects or RPC-style communication—this has been tried before and it has
failed. Instead we need to embrace the network by representing it directly in the programming
model through asynchronous message-passing. True scalability naturally involves distributed


http://en.wikipedia.org/wiki/Location_transparency

computing and with that inter-node communication which means traversing the network, that as
we know is inherently unreliable. It is therefore important to make the constraints, trade-offs and
failure scenarios of network programming explicit in the programming model instead of hiding
them behind leaky abstractions that try to “simplify” things. As a consequence it is equally
important to provide programming tools which encapsulate common building blocks for solving
the typical problems arising in a distributed environment—Ilike mechanisms for achieving
consensus or messaging abstractions which offer higher degrees of reliability.

Resllient

Why it is Important

Application downtime is one of the most damaging issues that can occur to a business. The usual
implication is that operations simply stop, leaving a hole in the revenue stream. In the long term it
can also lead to unhappy customers and a poor reputation, which will hurt the business more
severely. It is surprising that application resilience is a requirement that is largely ignored or
retrofitted using ad-hoc techniques. This often means that it is addressed at the wrong level of
granularity using tools that are too coarse-grained. A common technique uses application server
clustering to recover from runtime and server failures. Unfortunately, server failover is extremely
costly and also dangerous—potentially leading to cascading failures taking down a whole cluster.
The reason is that this is the wrong level of granularity for failure management which should
instead be addressed using fine-grained resilience on the component level.

Merriam-Webster defines resilience as:

® the ability of a substance or object to spring back into shape
® the capacity to recover quickly from difficulties

In a reactive application, resilience is not an afterthought but part of the design from the
beginning. Making failure a first class construct in the programming model provides the means to
react to and manage it, which leads to applications that are highly tolerant to failure by being able
to heal and repair themselves at runtime. Traditional fault handling cannot achieve this because it
is defensive in the small and too aggressive in the large—you either handle exceptions right where
and when they happen or you initiate a failover of the whole application instance.

Key Building Blocks

In order to manage failure we need a way to isolate it so it doesn’t spread to other healthy
components, and to observe it so it can be managed from a safe point outside of the failed context.
One pattern that comes to mind is the bulkhead pattern, illustrated by the picture, in which a
system is built up from safe compartments so that if one of them fails the other ones are not
affected. This prevents the classic problem of cascading failures and allows the management of
problems in isolation.



http://aphyr.com/posts/288-the-network-is-reliable
http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html
http://en.wikipedia.org/wiki/Cascading_failure

fig. 3 Bulkheads

The event-driven model, which enables scalability, also has the necessary primitives to realize this
model of failure management. The loose coupling in an event-driven model provides fully isolated
components in which failures can be captured together with their context, encapsulated as

messages, and sent off to other components that can inspect the error and decide how to respond.

This approach creates a system where business logic remains clean, separated from the handling
of the unexpected, where failure is modeled explicitly in order to be compartmentalized,
observed, managed and configured in a declarative way, and where the system can heal itself and
recover automatically. It works best if the compartments are structured in a hierarchical fashion,
much like a large corporation where a problem is escalated upwards until a level is reached which
has the power to deal with it.

The beauty of this model is that it is purely event-driven, based upon reactive components and
asynchronous events and therefore location transparent. In practice this means that it works in a
distributed environment with the same semantics as in a local context.

—EespoNSive

Why it is Important

Responsive is defined by Merriam-Webster as "quick to respond or react appropriately’. We use the
word in its general meaning and it should not be confused with Responsive Web Design, which
primarily refers to CSS media queries and progressive enhancements.

Responsive applications are real-time, engaging, rich and collaborative. Businesses create an open
and ongoing dialog with their customers by welcoming them through responsive interactive
experiences. This makes them more efficient, creates a feel of being connected and equipped to
solve problems and accomplish tasks. One example is Google Docs which enables users to edit


http://en.wikipedia.org/wiki/Responsive_Web_Design

documents collaboratively, in real-time—allowing them to see each other’s edits and comments
live, as they are made.

Applications that respond to events need to do so in a timely manner, even in the presence of
failure. If an application does not respond within an applicable time constraint—otherwise known
as latency—then it is effectively unavailable and therefore cannot be considered resilient.

The inability to meet a hard real-time system constraint amounts to a total system failure for
some applications such weapons or medical control systems. Not all applications have such strict
requirements. Many applications see a rapidly decreasing utility as they deviate from response
constraints, for example a financial trading application can lose the current deal without a timely
response.

More mainstream applications, such retail browsing and purchasing, show a measured decline in
utility as response time increases. Users interact more with responsive applications, resulting in
greater volumes of purchasing.

Key Building Blocks
Reactive applications use observable models, event streams and stateful clients.

Observable models enable other systems to receive events when state changes. This can provide a
real-time connection between users and systems. For example, when multiple users work
concurrently on the same model, changes can be reactively synchronized bi-directionally between
them, thus appearing as if the model is shared without the constraints of locking.

Event streams form the basic abstraction on which this connection is built. Keeping them reactive
means avoiding blocking and instead allowing asynchronous and non-blocking transformations
and communication.

Reactive applications embrace the order of algorithms by employing design patterns and tests to
ensure a response event is returned in O(1) or at least O(log n) time regardless of load. The scaling
factor can include but is not limited to customers, sessions, products and deals.

They employ a number of strategies to keep response latency consistent regardless of load profile:

e Under bursty traffic conditions reactive applications amortize the cost of expensive
operations—such as IO and concurrent data exchange—by applying batching combined
with an understanding and consideration of the underlying resources to keep latency
consistent.

* Queues are bounded with appropriate back pressure applied, queue lengths for given
response constraints are determined by employing Little’s Law.

¢ Systems are monitored with appropriate capacity planning in place.

* Failures are isolated with alternate processing strategies readily available for when circuit
breakers are triggered.

As an example of a responsive application consider a web application which has rich clients—
browser-based or mobile apps—to create an engaging user experience. This application will
execute logic and store state on the client-side in which observable models provide a mechanism
to update user interfaces in real-time when data changes. Technologies like WebSockets or
Server-Sent Events enable user interfaces to be connected directly with pushed event streams so
the event-driven system extends all the way from the back-end to the client. This allows reactive
applications to push events to browser and mobile applications in a scalable and resilient way by


http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Circuit_breaker_design_pattern

using asynchronous and non-blocking data transfer.

With this in mind it becomes apparent how the four qualities event-driven, scalable, resilient and
responsive are interconnected to form a cohesive whole:

responsive

fig. 4 The Reactive Traits

Conclusion

Reactive applications represent a balanced approach to addressing a wide range of contemporary
challenges in software development. Building on an event-driven, message-based foundation, they
provide the tools needed to ensure scalability and resilience. On top of this they support rich,
responsive user interactions. We expect that a rapidly increasing number of systems will follow this
blueprint in the years ahead.

The Reactive Manifesto.

Design by Maxime Dantec.
Powered by Play Framework.



http://warry.fr/
http://www.playframework.com/

